Super-replication in Stochastic Volatility Models under Portfolio Constraints

نویسندگان

  • JAKŠA CVITANIĆ
  • HUYÊN PHAM
  • NIZAR TOUZI
چکیده

We study a financial market with incompleteness arising from two sources: stochastic volatility and portfolio constraints. The latter are given in terms of bounds imposed on the borrowing and short-selling of a ‘hedger’ in this market, and can be described by a closed convex set K . We find explicit characterizations of the minimal price needed to super-replicate European-type contingent claims in this framework. The results depend on whether the volatility is bounded away from zero and/or infinity, and also, on if we have linear dynamics for the stock price process, and whether the volatility process depends on the stock price. We use a previously known representation of the minimal price as a supremum of the prices in the corresponding shadow markets, and we derive a PDE characterization of that representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct characterization of the value of super-replication under stochastic volatility and portfolio constraints

We study the problem of minimal initial capital needed in order to hedge a European contingent claim without risk. The nancial market presents incompleteness arising from two sources: stochastic volatility and portfolio constraints described by a closed convex set. In contrast with previous literature which uses the dual formulation of the problem, we use an original dynamic programming princip...

متن کامل

Super - replication under Gamma constraints 1

In a nancial market consisting of a non risky asset and a risky one, we study the minimal initial capital needed in order to super-replicate a given contingent claim under a Gamma constraint. This is a constraint on the unbounded variation part of the hedging portfolio. We rst consider the case in which the prices are given as general Markov di usion processes and prove a veri cation theorem wh...

متن کامل

Stochastic-Volatility, Jump-Diffusion Optimal Portfolio Problem with Jumps in Returns and Volatility

This paper treats the risk-averse optimal portfolio problem with consumption in continuous time for a stochastic-jump-volatility, jump-diffusion (SJVJD) model of the underlying risky asset and the volatility. The new developments are the use of the SJVJD model with logtruncated-double-exponential jump-amplitude distribution in returns and exponential jumpamplitude distribution in volatility for...

متن کامل

The American version of the Geometric Dynamic Programming Principle : Application to the pricing of American options under constraints

We provide an American version of the Geometric Dynamic Programming Principle of Soner and Touzi [22] for stochastic target problems. This opens the doors to a wide range of applications, particularly in risk control in finance and insurance, in which a controlled stochastic process has to be maintained in a given set on a time interval [0, T ]. As an example of application, we show how it can ...

متن کامل

Optimal Portfolio Problem for Stochastic-Volatility, Jump-Diffusion Models with Jump-Bankruptcy Condition: Practical Theory

This paper treats the risk-averse optimal portfolio problem with consumption in continuous time with a stochastic-volatility, jump-diffusion (SVJD) model of the underlying risky asset and the volatility. The new developments are the use of the SVJD model with double-uniform jumpamplitude distributions and time-varying market parameters for the optimal portfolio problem. Although unlimited borro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997